Ergodic Theoretic Characterization of Left Amenable Lau Algebras
نویسنده
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Fixed point characterization of left amenable Lau algebras
The present paper deals with the concept of left amenability for a wide range of Banach algebras known as Lau algebras. It gives a fixed point property characterizing left amenable Lau algebras in terms of left Banach -modules. It also offers an application of this result to some Lau algebras related to a locally compact group G, such as the Eymard-Fourier algebra A(G), the Fourier-Stieltjes al...
متن کاملErgodic Theorems on Amenable Groups
In 1931, Birkhoff gave a general and rigorous description of the ergodic hypothesis from statistical meachanics. This concept can be generalized by group actions of a large class of amenable groups on σ-finite measure spaces. The expansion of this theory culminated in Lindenstrauss’ celebrated proof of the general pointwise ergodic theorem in 2001. The talk is devoted to the introduction of abs...
متن کاملErgodic theory of amenable semigroup actions
In this paper, among other things, we state and prove the mean ergodic theorem for amenable semigroup algebras.
متن کاملSome Extremely Amenable Groups Related to Operator Algebras and Ergodic Theory
A topological group G is called extremely amenable if every continuous action of G on a compact space has a fixed point. This concept is linked with geometry of high dimensions (concentration of measure). We show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact gr...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 28 شماره No. 2
صفحات 29- 35
تاریخ انتشار 2011-01-24
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023